Be Star Spectroscopic Observables

Th. Rivinius

European Southern Observatory, Chile

August 26, 2016

SED at Balmer discontinuity

Provides fundamental stellar parameters (log g and T_{eff})

SED at Balmer discontinuity

• Provides fundamental stellar parameters (log g and $T_{\rm eff}$)

Equivalent width (Monitoring!)

Measurement

- Local re-nornalization wioth linear function
- Base points/intervals for this well outside line.
- If scripted, repeat this \sim 100 times with different base points/intervals
- will provide statistics of measurement. Use median as value and RMS scatter as 1-σ error.

Tellurics?

- Should not matter much (very nrarrow, even if strong)
- However, can be tested:
 - → Take very dry and very wet spectrum of normal B star.
 - → Compare difference in median to scatter in individual measurement.

Equivalent width (f-test, time series)

Simple way to test for variability

- Jones, C. E., Tycner, C., & Smith, A. D. 2011, AJ, 141, 150
- Basically, divide RMS scatter of sample by RMS individual uncertainty.
- If larger than one, the smaple is intrinsically variable.

Search for periods etc.

- "vartools" is an analysis package for time series data
- Free, available for all major op. systems, incl. windows
- http://www.astro.princeton.edu/~jhartman/vartools.html

Some words on S/N

How to measure and to compare SNR values

- Be stars have lots of continuum, 1/RMS method is fully ok:
 - → In a normalized (or at least flat) region, make statistics
 - SNR=value/RMS
- For comparison purpose:
 - \rightarrow Agree on wavelength range for all (e.g. red if H α lots of continuum)
 - → SNR is always per resolution element!
 - → SNR of 100 at R=1000 is different from SNR 100 at R=10000

Example: Del Sco

Example for scattering wings: chi Oph

Scattering wings and normalization

- Electron scattering wings are extremely wide
- Width is due to temperature (kinetic energy)
- Very light particles (electrons) means high velocity

Example for scattering wings: mu Cen

Scattering wings and disk state

- 2006 FEROS (red), disk dense down to star
- 2010 ESPaDOnS (blk), disk central part depleted by decay
- Difference in blue

Disk cycles (density profiles)

- Disk grows and decays both inside out
- Inner part of the disk reacts most quickly

Peak separation

Huang's law (Huang, S. S., 1972, ApJ 171, 549)

- Relates peak sep to disk size
- Ok for optically thin lines, very wrong for optically thick
- See Ol8446 vs. H α and H β .

Peak height and V/R

V over R measurement

- Historically, several conventions were used:
- V/R
- V 1/R 1
- V supposed stellar profile/R supposed stellar profile
- It does not really matter: Best publish both V and R individually, but always define how you compute it.

E over C measurement (aka intensity)

- Subject to same normalization issues as EW
- Sensitive to resolution (EW is not)

Cyclic Global V/R Oscillations (zet Tau)

Stable cycles for about 15 years

- Cycle time scale stable at ~1500 d for four cycles
- Enables steady-state model, angle ϕ only variable parameter.
 - → Physically understood as precessing density waves in the disk

Cyclic Global V/R Oscillations (zet Tau)

Stable cycles for about 15 years

- Cycle time scale stable at ~1500 d for four cycles
- Enables steady-state model, angle ϕ only variable parameter.
 - → Physically understood as precessing density waves in the disk
- Surface density is turned to intensity by MC-RT code HDUST
 - → Polarimetry is as well modeled

Pleione binary cycle (219 d)

Pleione binary cycle (219 d)

Pleione (early 2016)

- Left: $H\alpha$ monitoring, right: echelle monitoring. Consistent!
- Many new profiles in last periastron (Nov 2016), in addition to
 - → FORS polarimetry, X-shooter spectra, GRAVITY interferometry

Quiescent vs. active phase (Achernar, 2000 vs. 2006)

Differences quiescent vs. active phase

Balmer lines have emission contribution

Quiescent vs. active phase (Achernar, 2000 vs. 2006)

Differences quiescent vs. active phase

- Balmer lines have emission contribution
- "abs-emi-abs" residual signature in most spectral lines
- sometimes "abs-abs-abs"

Modelling the variations

Variable v sin i parameter

- Residuals of two seasons (1999, 2006) vs. diskless state (2000)
- Model residuals of $\Delta v \sin i = +10$ and $+35 \text{ km s}^{-1}$ vs. $v \sin i = 250 \text{ kms}$
- Varying any of (L, T_{eff} , β , v_{rot}/v_{crit}) does not reproduce residuals

Other stars? 66 Oph

66 Oph – Story of a disk loss

- Disk decayed for about 10 years, diskless state reached ~ 2010
 - → No significant disk feeding since early 2000s

Other stars? 66 Oph

66 Oph – Story of a disk loss

- Disk decayed for about 10 years, diskless state reached ~ 2010
 - → No significant disk feeding since early 2000s
- But still significant excess wings until ~ 2008
- Does excess v sin i correlate with re-accretion rate?

A double disk story

66 Oph (2009, NARVAL)

- perfectly normal profile in March 2009 (blk)
- 40 days later, something had happened
- The inner part of the disk had been replenished, then decayed again

And with BeSS?

H β of 60 Ori (a few days ago)

- A year ago (blk), a month ago (blue)
- And a week ago (red)
- Initial ejection must have been around the blue time
- Then circularized

Spectroscopy of non-radial pulsation: Spikes

- "Spikes" normal part of pulsation cycle in low v sin i Be stars
- A non-Be star, HR 4074, shows them, too
 - → Not due to circumstellar material
 - → HR4074 is a non-Be pulsational twin of ω CMa

Observational signatures: Spike formation

Observational signatures: Spike formation

- At low *i*, $v \sin i$ and projected ϑ -amplitude comparable.
- Spikes occur naturally for:
 - → Rapid rotators seen pole-on, pulsating in ℓ 2, m 2 g-mode
- Prograde modes did not produce spikes
- But: Other possibilities (Rossby etc.) not tested.

Tomography: Be+sdO Binaries

Potential target systems

- φ Per, 59 Cyg, FY CMa, ο Pup, HD 161306
 - → Periods 28-130 d, all bright systems, 3×SB2, 2×SB1, 2 shell stars.
- Optically thin?
 - \rightarrow H α certainly not, Balmer lines more-or-less, other likely yes.

Tomographic view on 59 Cyg

A first result (by Jason Grunhut)

- Her6678 shows radiative interaction, plus some faint features
- H α shows persistent disk and radiative interaction, but at to low v
 - → Consequence of optical thickness (c.f. "non-coherent scattering broadening", Hummel & Vrancken)
 - \rightarrow At higher v in H β (not shown)

Orbital Variability

Short-term cyclicity in ω Ori

- Stable for \sim a dozen cycles, $P \approx 1$ to 2 d
 - → Probably newly ejected material before circularization
- Exceptional dataset for tomography (originally for magnetometry)

Tomographic Reconstruction

Tomograms and data reconstruction

- Left: tomogram, middle: data, right: reconstructed data
 - → Balmer and He-lines remarkably similar (but not identical)
 - → Emission already stretches over most of orbit

Tomographic Reconstruction

Tomograms and data reconstruction

- Left: tomogram, middle: data, right: reconstructed data
 - → Balmer and He-lines remarkably similar (but not identical)
 - → Emission already stretches over most of orbit

Similarities and Differences Between Lines

Short-term cyclicity

- Probably newly ejected material before circularization
 - → Phase offset between Balmer and He lines in bulk of emission
 - → Possibly some contribution at lower velocities.

Some unrelated remarks

What: Exploit synergies proactively

- Keep an eye on what is observed by e.g. satellites
 - ➡ BRITE, K2, TESS
- and just put it on your lists.

How: Every spectrograph has its space

- LR: EW monitoring, BD stellar parameters, find Be stars
- HR-Hα: Profile and EW monitoring, find Be stars
- Echelle: See above, and "alerted/requested" observations
- Echelle or special λ -regions: For well defined projects and tasks
 - → Cail, quiescent Be stars in very high SNR, etc.