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SED at Balmer discontinuity
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HD 130163, MJD=56404.2617
D? = 0.546 dex, λ1 = 57.2 Å

see Shokry et al, A&A submitted, for details of procedure

• Provides fundamental stellar parameters (log g and Teff)
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see Shokry et al, A&A submitted, for details of procedure

• Provides fundamental stellar parameters (log g and Teff)



Equivalent width (Monitoring!)

Measurement

• Local re-nornalization wioth linear function

• Base points/intervals for this well outside line.

• If scripted, repeat this ∼ 100 times with different base
points/intervals

• will provide statistics of measrement. Use median as value and
RMS scatter as 1-σ error.

Tellurics?

• Should not matter much (very nrarrow, even if strong)
• However, can be tested:

Ù Take very dry and very wet spectrum of normal B star.
Ù Compare difference in median to scatter in individual measurement.



Equivalent width (f-test, time series)

Simple way to test for variability

• Jones, C. E., Tycner, C., & Smith, A. D. 2011, AJ, 141, 150

• Basically, divide RMS scatter of sample by RMS individual
uncertainty.

• If larger than one, the smaple is intrinsically variable.

Search for periods etc.

• “vartools” is an analysis package for time series data

• Free, available for all major op. systems, incl. windows

• http://www.astro.princeton.edu/∼jhartman/vartools.html



Some words on S/N

How to measure and to compare SNR values

• Be stars have lots of continuum, 1/RMS method is fully ok:
Ù In a normalized (or at least flat) region, make statistics
Ù SNR=value/RMS

• For comparison purpose:
Ù Agree on wavelength range for all (e.g. red if Hα lots of continuum)
Ù SNR is always per resolution element!
Ù SNR of 100 at R=1000 is different from SNR 100 at R=10 000



Example: Del Sco
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Example for scattering wings: chi Oph

Scattering wings and normalization

• Electron scattering wings are extremely wide

• Width is due to temperature (kinetic energy)

• Very light particles (electrons) means high velocity



Example for scattering wings: mu Cen

Scattering wings and disk state

• 2006 FEROS (red), disk dense down to star

• 2010 ESPaDOnS (blk), disk central part depleted by decay

• Difference in blue



Disk cycles (density profiles)

build-up decay

Haubois et al., 2012, ApJ 756, 156

• Disk grows and decays both inside out

• Inner part of the disk reacts most quickly



Peak separation

Huang’s law (Huang, S. S., 1972, ApJ 171, 549)

• Relates peak sep to disk size

• Ok for optically thin lines, very wrong for optically thick

• See Oi8446 vs. Hα and Hβ.



Peak height and V/R

V over R measurement
• Historically, several conventions were used:

• V/R

• V − 1/R − 1

• V − supposed stellar profile/R − supposed stellar profile
• It does not really matter: Best publish both V and R individually, but

always define how you compute it.

E over C measurement (aka intensity)

• Subject to same normalization issues as EW

• Sensitive to resolution (EW is not)



Cyclic Global V/R Oscillations (zet Tau)
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Adapted from Carciofi et al., 2009

Stable cycles for about 15 years

• Cycle time scale stable at ∼1500 d for four cycles
• Enables steady-state model, angle φ only variable parameter.

Ù Physically understood as precessing density waves in the disk

• Surface density is turned to intensity by MC-RT code HDUST

Ù Polarimetry is as well modeled
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Stable cycles for about 15 years

• Cycle time scale stable at ∼1500 d for four cycles
• Enables steady-state model, angle φ only variable parameter.

Ù Physically understood as precessing density waves in the disk

• Surface density is turned to intensity by MC-RT code HDUST
Ù Polarimetry is as well modeled



Pleione binary cycle (219 d)

Pleione (early 2016)

• Left: Hα monitoring, right: echelle monitoring. Consistent!
• Many new profiles in last periastron (Nov 2016), in addition to

Ù FORS polarimetry, X-shooter spectra, GRAVITY interferometry



Pleione binary cycle (219 d)

Pleione (early 2016)

• Left: Hα monitoring, right: echelle monitoring. Consistent!
• Many new profiles in last periastron (Nov 2016), in addition to

Ù FORS polarimetry, X-shooter spectra, GRAVITY interferometry



Quiescent vs. active phase (Achernar, 2000 vs. 2006)
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Differences quiescent vs. active phase

• Balmer lines have emission contribution

• “abs-emi-abs” residual signature in most spectral lines

• sometimes “abs-abs-abs”



Quiescent vs. active phase (Achernar, 2000 vs. 2006)
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Modelling the variations
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Variable v sin i parameter

• Residuals of two seasons (1999, 2006) vs. diskless state (2000)

• Model residuals of ∆v sin i=+10 and +35 km s−1 vs. v sin i =250 kms

• Varying any of (L , Teff , β, vrot/vcrit) does not reproduce residuals



Other stars? 66 Oph
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66 Oph – Story of a disk loss

• Disk decayed for about 10 years, diskless state reached ∼ 2010
Ù No significant disk feeding since early 2000s

• But still significant excess wings until ∼ 2008

• Does excess v sin i correlate with re-accretion rate?
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• Disk decayed for about 10 years, diskless state reached ∼ 2010
Ù No significant disk feeding since early 2000s

• But still significant excess wings until ∼ 2008

• Does excess v sin i correlate with re-accretion rate?



A double disk story

66 Oph (2009, NARVAL)

• perfectly normal profile in March 2009 (blk)

• 40 days later, something had happened

• The inner part of the disk had been replenished, then decayed again



And with BeSS?

Hβ of 60 Ori (a few days ago)

• A year ago (blk), a month ago (blue)

• And a week ago (red)

• Initial ejection must have been around the blue time

• Then circularized



Spectroscopy of non-radial pulsation: Spikes

31 Peg µCen ωCMa

• “Spikes” normal part of pulsation cycle in low v sin i Be stars
• A non-Be star, HR 4074, shows them, too

Ù Not due to circumstellar material
Ù HR4074 is a non-Be pulsational twin of ωCMa



Observational signatures: Spike formation

Rivinius et al., 2002



Observational signatures: Spike formation

Rivinius et al., 2002

• At low i, v sin i and projected ϑ-amplitude comparable.
• Spikes occur naturally for:

Ù Rapid rotators seen pole-on, pulsating in ` 2,m 2 g-mode

• Prograde modes did not produce spikes

• But: Other possibilities (Rossby etc.) not tested.



Tomography: Be+sdO Binaries

Hβ Hei5876

59 Cyg, Maintz, PhD thesis, 2003

Potential target systems

• φPer, 59 Cyg, FY CMa, o Pup, HD 161306
Ù Periods 28-130 d, all bright systems, 3×SB2, 2×SB1, 2 shell stars.

• Optically thin?
Ù Hα certainly not, Balmer lines more-or-less, other likely yes.



Tomographic view on 59 Cyg
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A first result (by Jason Grunhut)

• Hei6678 shows radiative interaction, plus some faint features
• Hα shows persistent disk and radiative interaction, but at to low v

Ù Consequence of optical thickness (c.f. “non-coherent scattering
broadening”, Hummel & Vrancken)

Ù At higher v in Hβ (not shown)



Orbital Variability

Hγ Hei6678

Difference vs. minimum

Short-term cyclicity in ωOri

• Stable for ∼ a dozen cycles, P ≈ 1 to 2 d
Ù Probably newly ejected material before circularization

• Exceptional dataset for tomography (originally for magnetometry)



Tomographic Reconstruction
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Tomograms and data reconstruction

• Left: tomogram, middle: data, right: reconstructed data
Ù Balmer and He-lines remarkably similar (but not identical)
Ù Emission already stretches over most of orbit



Tomographic Reconstruction
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Tomograms and data reconstruction

• Left: tomogram, middle: data, right: reconstructed data
Ù Balmer and He-lines remarkably similar (but not identical)
Ù Emission already stretches over most of orbit



Similarities and Differences Between Lines
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Short-term cyclicity

• Probably newly ejected material before circularization
Ù Phase offset between Balmer and He lines in bulk of emission
Ù Possibly some contribution at lower velocities.



Some unrelated remarks

What: Exploit synergies proactively

• Keep an eye on what is observed by e.g. satellites
Ù BRITE, K2, TESS

• and just put it on your lists.

How: Every spectrograph has its space

• LR: EW monitoring, BD stellar parameters, find Be stars

• HR-Hα: Profile and EW monitoring, find Be stars

• Echelle: See above, and “alerted/requested” observations
• Echelle or special λ-regions: For well defined projects and tasks

Ù Caii, quiescent Be stars in very high SNR, etc.


