Be Stars seen by space photometry

Th. Rivinius

European Southern Observatory, Chile

October 24, 2017

Some Be stars, Credit: Robert Gendler via APOD (January 9, 2006)

Pleione, Alkyone, Electra, Merope

Observations

Open issues

Conclusions

Disclaimer

Some words on what follows

- Many of the following cases have been first published by others
- I have re-analysed Kepler, CoRoT, and SMEI data (but not MOST)
- Results below may not be fully endorsed by original authors
 - → Any stupid blunder is surely mine, not theirs
- Unpublished BRITE results are from Dietrich Baade
- Graphs without reference are own work (but possibly by collaborators)

Observations

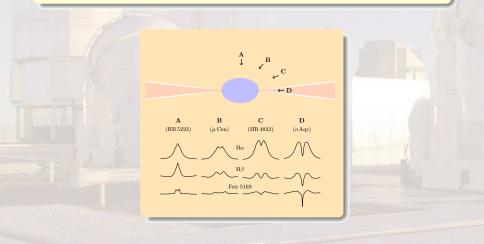
Open issues

Conclusions

Content

Intro	
00000000	

Observations


Open issues

Conclusions

Be star classification

Definition (Be stars)

A non-supergiant B star whose spectrum has, or had at some time, one or more Balmer lines in emission. (Jaschek et al., 1981; Collins, 1987)

Observations

Open issues

Conclusions

Be star classification

Definition (Be stars)

A non-supergiant B star whose spectrum has, or had at some time, one or more Balmer lines in emission. (Jaschek et al., 1981; Collins, 1987)

Problem: Any dense gas will produce emission around B star

Still has its scope:

For classification data (in amount and quality), the above definition is the only practicable.

Physical prope	erties of class	sical Be stars	
Intro O●○○○○○○	Observations	Open issues	Conclusions

Definition (Classical Be stars)

- Emission is formed in a disk
 - → Evidence: Interferometry, polarimetry
- Disk is created by central star through mass loss
 - → Evidence: Disk can come and go in weeks to decades, absence of mass-transferring companion

More physical definition, still based on observational properties, but hard to apply. Though necessary to understand different object types.

Physical prop	perties of class	sical Be stars	
Intro O●○○○○○○	Observations	Open issues	Conclusio

Definition (Classical Be stars)

- Emission is formed in a disk
 - → Evidence: Interferometry, polarimetry
- Disk is created by central star through mass loss
 - → Evidence: Disk can come and go in weeks to decades, absence of mass-transferring companion

More physical definition, still based on observational properties, but hard to apply. Though necessary to understand different object types.

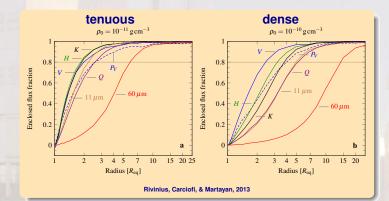
Observational corollary (Disk angular momentum & magnetic field)

- Disk is rotationally supported (i.e. Keplerian)
 - → Evidence: Spectro-interferometry, spectroscopy of shell stars, time behaviour of perturbed disks
- No large-scale organized magnetic field (e.g. dipole)
 - → Evidence: None found down to few ten Gauss

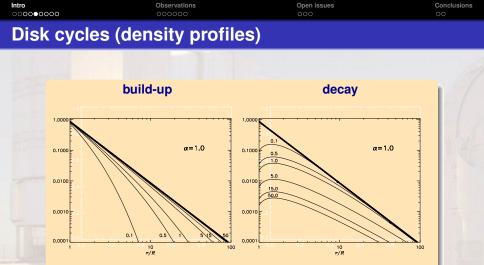
Observations

Open issues

Conclusions

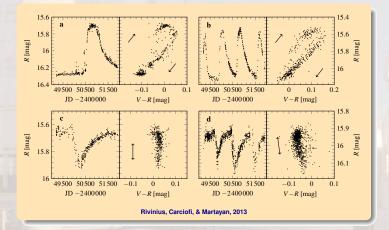

What do we observe

Physical model


- HDUST radiative transfer model of Be star with disk
 - \rightarrow High dynamic range, colour computed with model for human vision
- Star only one of several contributors to observational signature

Intro	Observations	Open issues	Conclusions
0000000	000000	000	
Origin of co	ntinuum excess	(nole-on case)	

Formation region as function of disk density (pseudo-photosphere)


- Optically thin disk: blueish photometric bands have common formation region
- · Optically thick disk: stratification, redder means further out

Haubois et al., 2012, ApJ 756, 156

- Disk grows and decays both inside out
- Inner part of the disk reacts most quickly

Intro ○○○○○●○○○	Observations	Open OOC	n issues	Conclusions
Photometric dis	k cycles (observed)	

- Upper row: Low inclination Be stars
- Lower row: High inclination Be stars

	Observations	Open issues	Conclusions
00000000	000000	000	00
Pulsation seen in many Be stars (spectra)			

Intro	
000000000	

Observations

Open issues

Conclusions

The questions

What we understand

- How the star behaves, at least at large
 - → Rapid rotation
 - → g-mode pulsation
 - → no magnetic field
- How the disk behaves (non-disturbed)
 - → Governed by viscosity (maybe plus ablation)
 - → "forgets" how it was formed once in place

What not

- How does the matter get ejected?
- How is it circularized into a viscous disk?
- · How the inner disk behaves dynamically when disturbed
- Star-disk interface (and disk-star interface)

Intro	
00000000	

Observations

Open issues

Conclusions

The pre-BRITE spaceborne photometry view

Multiperiodic Be stars

Between a few and more than 30 periods found:

CoRoT 102719279, HD 175869, HD 51193, CoRoT 102761769, HD 181231, HD 50209, HD 51452, **HD 49330**, *ζ* **Oph**, HD 163868, HD 127756, HD 217543, *β* CMi, **Achernar**, KIC 6954726

Gutiérrez-Soto et al., 2010, 2009, 2011; Janot-Pacheco et al., 2011, Neiner et al., 2009, 2012; Diago et al., 2009; Huat et al., 2009; Walker et al., 2005; Saio et al., 2007; Cameron et al., 2008; Goss et al., 2011; Balona et al., 2011. Data from CoRoT, MOST, SMEI, & Kepler.

Red: Amplitude maxima coincide with outbursts.

Semann et al., 2011

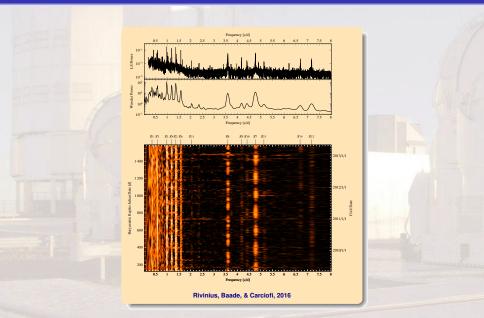
On 18 Be stars in the CoRoT exoplanet fields:

"Generally the frequency spectrum shows a forest of frequencies around one or two main frequencies as well as several isolated frequencies."

Observations

Open issues

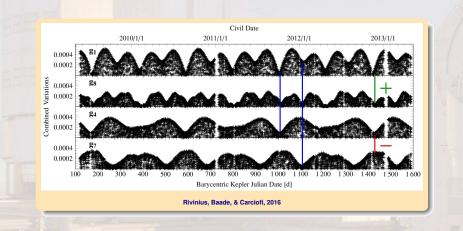
Conclusions


Content

Observations •00000 Open issues

Conclusions

Inactive: KIC 8057661, 21 kK



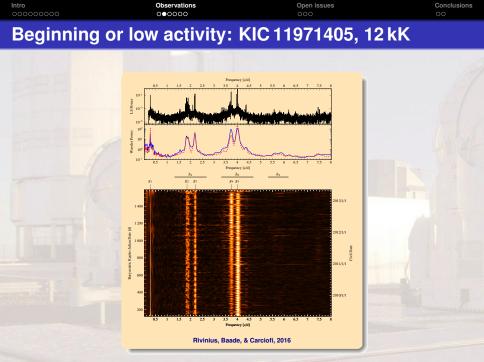
Intro	
00000	

Observations •00000 Open issues

Conclusions

Inactive: KIC 8057661, 21 kK

- Reconstructed absolute variability of some groups
- Minima and maxima are intedependent with complicated pattern


Observations •••••• Open issues

Conclusions

Inactive: KIC 8057661, 21 kK

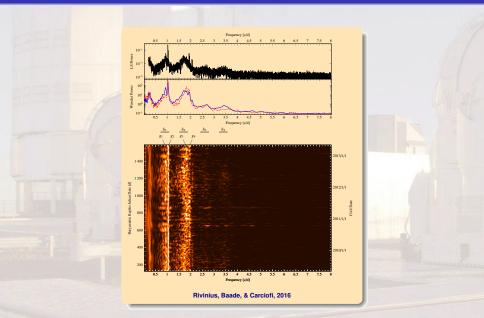
Early type, but inactive Be star

- Kepler data, full time span over 4 yrs
- No outbursts, probably not even a circumstellar disk during run
- Many frequencies
 - → Either hundreds in a dozen groups
 - → Or a dozen frequencies with variable amplitude
- Correlations and anti-correlations between different groups
 - → Resonant coupling?
- Looks like a normal pulsating star

Beginning or low	w activity: KIC 1 ⁻	1971405, 12 kK	
Intro 00000000	Observations ○●○○○○	Open issues	Conclusions

Late type, low activity Be star

- A few minor outburst in second half of run
- Many frequencies
 - → Either many dozens in five or six groups
 - → Or a few frequencies with variable amplitude
- Correlations and anti-correlations between different groups
 - → Resonant coupling?
- So far looks like a normal pulsating star
- Broad bumps in power spectra
- Stronger when more active (second half of run)
- An additional frequency (group) becomes apparent in the second half of the run
- Be specific properties

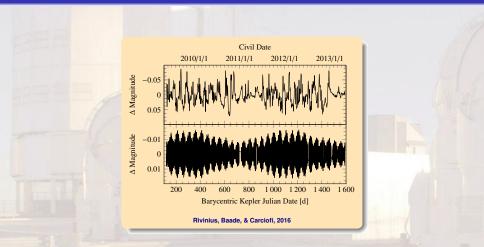


Observations

Open issues

Conclusions

High activity: KIC 6954726, 17 kK

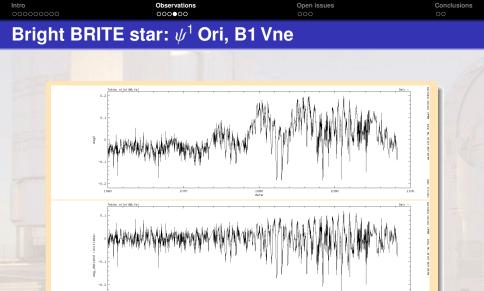


Observations

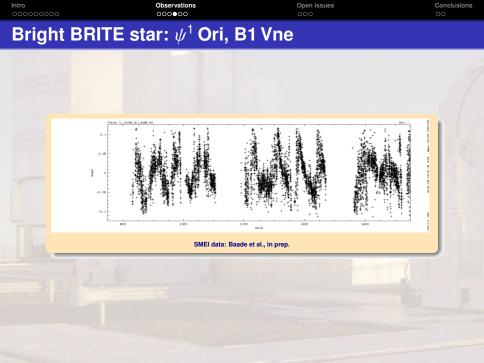
Open issues

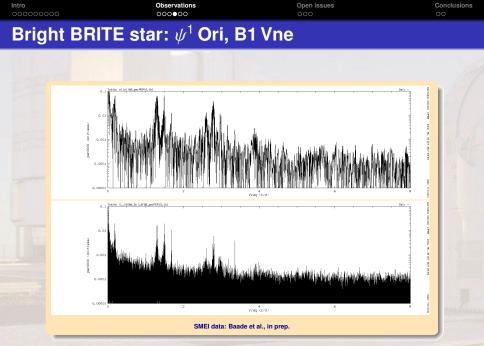
Conclusions

High activity: KIC 6954726, 17 kK



- Top: Reconstructed long term variations (outbursts)
- Bottom: Reconstructed behaviour of group at ~ 1 c/d


High activity:	KIC 6954726 ,	17 kK	
Intro 00000000	Observations	Open issues	Conclusio OO


Mid type, high activity Be star

- Many outburst; almost continuously
- Nearly infinite number of fequencies
 - → Thousands needed to explain strong bumps
 - → Or a few frequencies in groups plus non-periodic varibility on typical timescales
- Very different from a normal pulsating star
- Strength of broad bumps correlate with outburst activity
- As well correlation between pulsation group 1 and outbursts
- Additional frequency group present when more active
- Bumps have many higher harmonics
- Be specific properties

date

Bright BRITE sta	ar: ψ^1 Ori, B1 Vne)	
Intro 00000000	Observations ○○○●○○	Open issues	Conclusions

Early type, high activity Be star

- Regular outbursts over last ten years!
- Many high frequencies
 - → Some difference values between those have own life, not only beating
- Frequency differences govern outburst behaviour
- In many other BRITE stars, too. Published: 28 Cyg, η Cen

Joint campaign planned on λ Pav

- BRITE would observe March to September, alert to outbursts
- Southern amateurs to follow in spectroscopy
- ESO-VLTI to follow in interferometry
- Brazilian LNA to follow in polarimetry
- Technical difficulties prevented BRITE to observe

Intro 000000000	Observations ○○○○●○		Open issues	Conclusions	

Observational summary I

Štefl frequencies

- In outburst (when matter is ejected) a distinct frequency group becomes active
- Always at about same value, but with ~10% scatter
- Clearly associated with circumstellar environment (spectroscopy)
- Either freshly ejected matter, or ejection process itself

Frequency groups

- Many frequencies are
 - → either intrinsically variable in strength and value
 - → or consist of large number of subfrequencies, creating the vriable appearance via beating
- Sometimes, frequency differences within or between these groups are seen in the power spectra, too (see talk Baade)
- Could this reflect the root cause of the ejection?

Open issues

Observational summary II

Power bumps

- Not well defined frequencies, but very broad
- Present when star has disk, stronger in outburst
- · Large number of harmonics (strongly non-sinusoidal)
- Stochastic variation, but with a typical timescale
- Most obvious (and common) feature in Be star power spectra
 - → SMEI, CoRoT, Kepler: Between 1/3 and 2/3 of stars show bumps.
- Probably arises from transition region star-disk (or disk-star?)

Delta frequencies

- Very low frequencies
- · Values equal to difference of two shorter frequencies
- High to very high amplitude
- These are actual outbursts. At least in some stars.

Observations

Open issues

Conclusions

Content

What we observ	e and what we u	nderstand	
Intro 00000000	Observations	Open issues ●○○	Conclusions

Observed variability

- The star
 - → Notwithstanding details, pulsational appearance is in principle clear
 - \rightarrow Can easily extrapolated from non-Be stars (such as SPB, β Cep)

• The disk

- → Viscous Decretion Disk (VDD) model explains long term variations
- → But only in quasi-equilibrium state.
- → Disturbed inner disk (aka outburst) not covered by current VDD

• The rest

→ Assumption: What is left comes from star-disk interface region

Intro 000000000		Observations		Open issues ○●○	Conclusions
	 _	_	_		

Mass ejection mechanism

$\eta\,{\rm Cen}$ type mechanism

- Dominant mechanism of mass ejection
- · Observationally, we may be ready to identify all we need
 - → Need in-depth observations of well-known stars, not statistics
- Next steps have to do with
 - → physical interpretation of various components
 - → modelling

Other mechanisms?

- · Some very early type Be stars show "amorphous" power spectrum
 - → Stochastic pulsation?
- Very late type Be stars show "almost rotational" power spectrum
 - → Rotation plus something?
 - → Something else entirely?

Intro	Observations	Open issues	Conclusions
		000	

Mass accretion mechanism

Accretion?

- Way viscosity works requires large fraction of material to be re-accreted.
 - → Only then gas disk can transport angular momentum outwards
- · It is unknown if this has an observational signature
- It is unknown how such signature might look like
- Have we already observed it?

Observations

Open issues

Conclusions

Content

Intro	

Observations

Open issues

Conclusions ●○

Comparison of missions wrt. Be stars

Mission	Time base	Data quality	Statistics	Context
MOST	several weeks	very high	bad	ok
Kepler	4 yrs	very high	bad	bad
K2	several weeks	very high	ok	bad
CoRoT	1–3 months	very high	ok	bad
SMEI	9 yrs	what's that?	good	good
BRITE	months to years?	high	ok	good
TESS	several weeks	very high	ok	ok

• BRITE has a unique position in the above table:

- → Observes many stars
- → For which we know a lot of context
- → Precision high enough to analyze individual outbursts (and sometimes even cycles of a frequency)
- → Timebase can be extended by re-observing fields.
- → Only mission without a red entry in the Table!

Conclusions

- BRITE data promise giant leap in understanding
 - → Bright targets mean they are well studied already
 - → Further supporting data can be acquired with modest equipment
 - → For few selected targets get closer to Kepler time base
- We know enough to make sense of what we do not know
 - → Stellar pulsation and long-term disk behaviour identifiable
 - → What remains is likely signature of disk formation process
- Have to be very careful in interpretation for modelling
 - → Is any frequency a **photospheric** mode at all, **or circumstellar**?
 - → Is any frequency group a real group or just the Fourier representation of a single, variable mode?
 - \sim Resonant mode coupling in Be (and SPB, β Cep) stars