

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Be stars and the Be phenomenon

Coralie Neiner LESIA, Paris Observatory

Outline

- Classical Be stars
 - Emission from the disk
 - The Be phenomenon
- Magnetism
 - Magnetic Be stars and magnetospheres
 - Magnetism in classical Be stars
- Pulsations
 - Pulsations and rapid rotation effects
 - CoRoT results
 - Be outbursts
- Summary

Classical Be stars

- Non-supergiant hot stars (O7 → A2) with emission lines
- ~20% of all B stars
- Peculiar type of stars or stellar evolutionary stage?

B -> Be -> B -> Be

 Cool circumstellar disk + hot polar wind

- Rapid rotation: ~250 km/s
 - \rightarrow variations on all timescales
 - \rightarrow great laboratory for stellar physics !

Signature of the disk: emission line profiles

 \rightarrow depends on the inclination under which we observe the disk

Meudon, Oct 2017

Sletteback 1979

4

Signature of the disk: emission line profiles

Telting 1996

 \rightarrow depends on inhomogeneities in the disk

Signature of the disk: emission line profiles

Meudon, Oct 2017

Hubert & Floquet, 1998

The Be phenomenon

- Decretion disk fed by ejections of matter
 - → How does the star eject matter ?

Thanks to rapid rotation?

Rapid rotation: Doppler broadening of the lines

Rapid rotation: flattening of the star

V=0

Rotation velocity \rightarrow

North

α Eri observed at VLTI, (Domiciano de Souza et al. 2003)

Req=1.56 Rpol

Meudon, Oct 2017

Ejection of matter

Ejection is easier at the equator, but rotation is not sufficient: only ~90% of needed critical velocity

The Be phenomenon

- Decretion disk fed by ejections of matter
 - \rightarrow How does the star eject matter ?

- Rapid rotation plays an important role but is not enough
- Additional ingredient: Magnetism ? Pulsations ?

Magnetism in hot stars

- Fossil fields
- Usually simply structured, but some exceptions
- Strong inside the star, weak at the surface
- ~10% of all hot stars are magnetic ($B_{pol} > ~50 \text{ G}$)

Oblique dipole and magnetospheres

©Townsend

Oblique dipole field

- → Rotational modulation of :
- Longitudinal field
- Photospheric lines if spots
- UV wind lines

Confined wind in the magnetosphere

- → Rotational modulation of :
- X-rays emission
- Photometric lightcurve
- H α emission

Lightcurve

Longitudinal magnetic field

Spots at the surface

Surface chemical inhomogeneities due to magnetic fields \rightarrow produce variations in spectral and photometric quantities \rightarrow visible in the field

Magnetosphere: X-rays

X-rays detections from shocks between wind particles coming from both magnetic poles

 \rightarrow X-ray emission in the magnetic equator plane

 \rightarrow X-ray emission modulated by rotation

Babel & Montmerle, 1997

Magnetic confinement

$$\begin{split} \eta_* &= B^2 \ R^2 \ / \ \dot{M} \ V_{\infty} \\ \eta_* &> 1 \ \rightarrow \ confinement \end{split}$$

Alfven radius $R_A / R_* = \eta_* {}^{1/2n} \rightarrow \text{ confinement only below } R_A$

Kepler corotating radius (g force = centrifugal force) R_K / R_{*} = V_{rot} / V_{crit} \rightarrow centrifugal support only above R_K

 $\begin{array}{l} r < R_A \text{ and } \eta_* > 1 \ \rightarrow \ Magnetosphere \\ r < R_K \ \rightarrow \ Dynamical \ magnetosphere \\ r > R_K \ \rightarrow \ Centrifugally \ supported \ magnetosphere \end{array}$

Meudon, Oct 2017

Petit et al. 2013

Dynamical magnetosphere

©Ud Doula

Magnetic confinement

$$\begin{split} \eta_* &= B^2 \ R^2 \ / \ \dot{M} \ V_{\infty} \\ \eta_* &> 1 \ \rightarrow \ confinement \end{split}$$

Alfven radius $R_A / R_* = \eta_* {}^{1/2n} \rightarrow \text{ confinement only below } R_A$

Kepler corotating radius (g force = centrifugal force) R_K / R_{*} = V_{rot} / V_{crit} \rightarrow centrifugal support only above R_K

 $\begin{array}{l} r < R_A \text{ and } \eta_* > 1 \ \rightarrow \ Magnetosphere \\ r < R_K \ \rightarrow \ Dynamical \ magnetosphere \\ r > R_K \ \rightarrow \ Centrifugally \ supported \ magnetosphere \end{array}$

Meudon, Oct 2017

Petit et al. 2013

Could the Be disk be a corotating magnetically confined disk?...

Townsend & Owocki 2005

Meudon, Oct 2017

... or Keplerian disk fed by breakouts of the field lines?

Detecting fields in Be stars is challenging

It is more difficult to detect magnetic fields if :

- the field is weak...
- the star rotates fast (Stokes V signal spread over a larger width)
- the star is hot (less lines for average)
- the star has emission lines (excluded from average)
- the star pulsates (short exposures only)
 - \rightarrow particularly challenging for Be stars

- 43 Be stars observed with MiMeS
- No direct field detection
- Rather large upper limits on undetected fields (B₁ ~ 150 G)

 ω Ori (B2IIIe) shows indirect signs of the presence of a magnetic field and confined clouds :

in the UV wind lines

- 43 Be stars observed with MiMeS
- No direct field detection
- Rather large upper limits on undetected fields (B₁ ~ 150 G)

 ω Ori (B2IIIe) shows indirect signs of the presence of a magnetic field and confined clouds : V/R intensities in 2001

- in the UV wind lines
- in Musicos data from 2001

Neiner et al. 2003c

Meudon, Oct 2017

- 43 Be stars observed with MiMeS
- No direct field detection
- Rather large upper limits on undetected fields ($B_l \sim 150 \text{ G}$)

 ω Ori (B2IIIe) shows indirect signs of the presence of a magnetic field and confined clouds : 1975 1985 Year 1995 2005

- in the UV wind lines
- in Musicos data from 2001
- in ESPaDOnS/Narval data from 2007 (but not from 2005 and 2008)
 - \rightarrow no signs of confined material at outburst times

Neiner et al. 2012c

Meudon, Oct 2017

ω Ori: confinement

Neiner et al. 2003c

 \rightarrow The clouds are wiped off when an outburst occurs

Magnetic Be stars ?

Neiner et al. 2012c

Magnetic fields in Be stars:

 \rightarrow can create magnetospheres or clouds close to the star \rightarrow magnetic (non-classical) Be stars

- \rightarrow can exist in classical Be stars but they are weak (ω Ori)
- \rightarrow cannot create the Keplerian decretion disk \rightarrow **The magnetic field is not at the origin of the Be phenomenon**

Pulsations in Be stars?

Pulsations

Meudon, Oct 2017

*Telting & Schrijvers*₃₅

l=m=2

Effect of rapid rotation

Retrograde pulsation mode

No rotation

Rapid rotation

Rapid rotation produces 3 types of pulsations:

Low degree modes (equatorially focused) High degree modes (whispering gallery)

Intermediate degree modes (chaotic)

or a mixture of these \rightarrow

Meudon, Oct 2017

©*Reese*

Could pulsations explain Be outbursts ?

Pulsations could:

- bring additional angular momentum locally when they are at their maximum of amplitude

- create constructive interference (beatings), to bring even more angular momentum

Pulsation beatings

Multiperiodicity in Be star μ Cen, vsini=140 km/s

• 2 groups of periods: $P_1-P_4 \sim 0.505 d$ $P_5-P_6 \sim 0.280 d$

 Separation of peaks in each group: 0.01-0.02d

 \rightarrow produce beatings

Rivinius et al. 1998a

Be outbursts

Rivinius et al. 1998b

Possible coincidence of beatings and times of outbursts in μ Cen

 \rightarrow Never shown in other Be stars from the ground...

The CoRoT era (>2007)

CoRoT light curves of Be stars...

κ-driven modes

HD181231 (B5IVe)

54 detected frequencies, at least 10 independent ones

Beatings at P=14 and 116 d

Neiner et al. 2009

Spectroscopy

HD181231 (B5IVe)

Some CoRoT frequencies are also detected in spectroscopy

 \rightarrow allows the identification of these modes

Neiner et al. 2009

Seismic modelling: extra mixing

Size of convective core of Be stars

 → Convective core of Be stars are 20% larger and 25% heavier than the core of B stars
→ due to modification of structure by rotational mixing and penetrative convection

Be outburst

Spectroscopy *Rivinius et al. 1998*

CoRoT photometry

HD49330 (B0.5IVe) > 300 frequencies and 30 independent ones p and g modes

Huat et al. 2009

Correlation between pulsations and outbursts

©*Huat*

Correlation between pulsations and outbursts

Seismic modelling of HD49330

Tohoku models, with ROTORC 2D structure, for κ modes

 $M = 10 M_{\odot}$

 $M = 13 M_{\odot}$

But for HD49330: M = 14.4 M_{\odot} \rightarrow impossible to reproduce g modes

HD51452: a hot Be star with g modes

HD51452: stochastically driven modes

g modes with f < 2 f_{rot} \rightarrow gravito-inertial modes

Stochastic excitation in the core or in the thin subsurface zone

Neiner et al. 2012e

HD49330 (with outburst)

Explanation to the Be phenomenon

Summary

- Be stars are hot stars with emission lines produced by their circumstellar environment
- ~10% of all hot stars are magnetic; most of them have a magnetosphere and are thus magnetic Be stars.
- Weak fields can exist in classical Be stars but they do not produce the Be phenomenon and Keplerian disk.
- Pulsations occur in all Be stars, excited by the κ mechanism but also stochastically.
- There is a clear correlation between pulsation variations and outbursts.

→ Be phenomenon = rapid rotation + angular momentum transported by stochastic gravito-inertial pulsations

